初一數(shù)學人教版知識點歸納
人教版初中物理知識點總結歸納
這里有最全面的總結
初三物理知識點歸納
問老師不就行啦
初二英語知識點歸納
同意同意?。。?/div>
初一地理知識點歸納有哪些?
1、緯度的變化規(guī)律:由赤道(0°緯線)向南、北兩極遞增。的緯度是90度,在南極、北極。
2、赤道以北的緯度叫北緯,用“N”表示;赤道以南的緯度叫南緯,用“S”表示。
3、以赤道為界,將地球平均分為南、北兩個半球,赤道以北是北半球,赤道以南是南半球。
4、經(jīng)度的變化規(guī)律:由本初子午線(0°經(jīng)線)向西、向東遞增到180。
5、本初子午線以東的經(jīng)度叫東經(jīng),用“E”表示;本初子午線以西的經(jīng)度叫西經(jīng),用“W”表示。
初一地理知識點歸納
第一章:地球和地球儀
1、形狀:地球是一個兩極稍扁、赤道略鼓的不規(guī)則球體.
2、大小:半徑:6371千米;極半徑:6357千米;赤道周長:4萬千米.
3、地球儀:地球儀是地球的模型.(在地球儀上找出地軸、兩極、赤道)
4、經(jīng)線:
經(jīng)線特點:所有經(jīng)線一樣長;經(jīng)線都指示南北方向;經(jīng)線是一個半圓.
經(jīng)度:0°—180°;0°經(jīng)線為本初子午線,以東為東經(jīng),用字母E表示,0°經(jīng)線以西為西經(jīng),用字母W表示;5、緯線:
緯線特點:緯線長短不一,赤道最長,向南北兩極逐漸縮短;緯線都指示東西方向;
緯線是一個完整的圓.
緯度:0°—90°;0°緯線為赤道,赤道以北為北緯,用字母N表示;赤道以南為南緯,
用字母S表示.
6、低中高緯的劃分:
南北半球,0°—30°為低緯度,30°—60°為中緯度,60°—90°為高緯度.
7、東西半球的劃分:
以20°W和160°E組成的經(jīng)線圈為界;20°W以東、160°E以西為東半球;
20°W以西、160°E以東為西半球;
8、能在地球儀上利用經(jīng)、緯網(wǎng)確定地球上任何一個地點的位置.
9、地球的自轉:
方向:自西向東;周期:一天(24小時);自轉中心:地軸.
地理意義:產(chǎn)生了晝夜更替和時間的差異.
10、地球的公轉:
公轉中心:太陽;方向:自西向東;周期:一年;公轉軌道:橢圓.
地理意義:產(chǎn)生了季節(jié)的變化和晝夜長短的變化.
1、形狀:地球是一個兩極稍扁、赤道略鼓的不規(guī)則球體.
2、大小:半徑:6371千米;極半徑:6357千米;赤道周長:4萬千米.
3、地球儀:地球儀是地球的模型.(在地球儀上找出地軸、兩極、赤道)
4、經(jīng)線:
經(jīng)線特點:所有經(jīng)線一樣長;經(jīng)線都指示南北方向;經(jīng)線是一個半圓.
經(jīng)度:0°—180°;0°經(jīng)線為本初子午線,以東為東經(jīng),用字母E表示,0°經(jīng)線以西為西經(jīng),用字母W表示;5、緯線:
緯線特點:緯線長短不一,赤道最長,向南北兩極逐漸縮短;緯線都指示東西方向;
緯線是一個完整的圓.
緯度:0°—90°;0°緯線為赤道,赤道以北為北緯,用字母N表示;赤道以南為南緯,
用字母S表示.
6、低中高緯的劃分:
南北半球,0°—30°為低緯度,30°—60°為中緯度,60°—90°為高緯度.
7、東西半球的劃分:
以20°W和160°E組成的經(jīng)線圈為界;20°W以東、160°E以西為東半球;
20°W以西、160°E以東為西半球;
8、能在地球儀上利用經(jīng)、緯網(wǎng)確定地球上任何一個地點的位置.
9、地球的自轉:
方向:自西向東;周期:一天(24小時);自轉中心:地軸.
地理意義:產(chǎn)生了晝夜更替和時間的差異.
10、地球的公轉:
公轉中心:太陽;方向:自西向東;周期:一年;公轉軌道:橢圓.
地理意義:產(chǎn)生了季節(jié)的變化和晝夜長短的變化.
初中各科知識點歸納
初中數(shù)學幾何公式大全
初中幾何公式包括:線、角、圓、正方形、矩形等數(shù)學學幾何的公式
初中幾何公式:線
1 同角或等角的余角相等
2 過一點有且只有一條直線和已知直線垂直
3 過兩點有且只有一條直線
4 兩點之間線段最短
5 同角或等角的補角相等
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
初中幾何公式:角
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補
初中幾何公式:三角形
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21 全等三角形的對應邊、對應角相等
22邊角邊公理 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理 有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
初中幾何公式:等腰三角形 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等
初中幾何公式包括:線、角、圓、正方形、矩形等數(shù)學學幾何的公式
初中幾何公式:線
1 同角或等角的余角相等
2 過一點有且只有一條直線和已知直線垂直
3 過兩點有且只有一條直線
4 兩點之間線段最短
5 同角或等角的補角相等
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
初中幾何公式:角
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補
初中幾何公式:三角形
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21 全等三角形的對應邊、對應角相等
22邊角邊公理 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理 有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
初中幾何公式:等腰三角形 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等
初中生物知識歸納
這種東西沒有必要歸納的,只要多注意細節(jié)就好了.一般要考都會讓20%以上的人達到優(yōu)秀線,所以不要緊張
初一科學知識點歸納有哪些?
初一科學知識點歸納如下:
1、學習科學的方法是:仔細觀察、認真思考、積極探究實驗??茖W研究最重要的環(huán)節(jié)是實驗。
2、測量工具:天平、量筒、刻度尺、停表;觀察工具:顯微鏡、放大鏡、望遠鏡、雷達。
3、累積取平均值法:得用積少成多,測多求和的方法間接測量。例:測紙厚、細鐵絲的直徑、一枚郵票的質(zhì)量。4、1立方米=1000升;1升=1000毫升;1毫升=1立方厘米。
5、量筒的使用方法:首先要注意量筒的測量范圍(量程),量液體時量筒應放平,讀數(shù)時視線要與凹液面的最低點保持水平。讀數(shù)仰視導致:偏小,俯視導致:偏大。
初中歷史知識點歸納
如果開卷考試按年代整理大事件并且標上相應頁數(shù),作為一個目錄考試查找方便。還有出現(xiàn)在教材中的人物,也列表制作目錄,并且留意他們的照片。各類題目的答題模式列清單??记皫滋煸缟贤砩铣闀r間熟悉熟悉。
復習以來做的卷子上出現(xiàn)的課外知識稍稍積累一下。還有平時易錯知識點。
在書上粘貼標簽。方便查找知識點。
最后的時期,一定要統(tǒng)籌全局,做好規(guī)劃,理清基礎知識!
知識點應當自己總結歸納,這樣才能熟悉教材!
復習以來做的卷子上出現(xiàn)的課外知識稍稍積累一下。還有平時易錯知識點。
在書上粘貼標簽。方便查找知識點。
最后的時期,一定要統(tǒng)籌全局,做好規(guī)劃,理清基礎知識!
知識點應當自己總結歸納,這樣才能熟悉教材!
初中數(shù)學知識點歸納
初中數(shù)學知識點總結
一、基本知識
一、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)②分數(shù)→正分數(shù)/負分數(shù)
數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。
絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。③一個數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個有理數(shù)互為倒數(shù)。
除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。
3、代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關系
大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦?,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數(shù)根;
II當△=0時,一元二次方程有2個相同的實數(shù)根;
III當△<0時,一元二次方程沒有實數(shù)根(在這里,學到高中就會知道,這里有2個虛數(shù)根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:①關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C如果不等式乘以0,那么不等號改為等號
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
3、函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。
一次函數(shù):①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。②當B=0時,稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。③在一次函數(shù)中,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時,則經(jīng)124象限;當K〉0,B〈0時,則經(jīng)134象限;當K〉0,B〉0時,則經(jīng)123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內(nèi),過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯角相等,兩直線平行
11、同旁內(nèi)角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯角相等
14、兩直線平行,同旁內(nèi)角互補
15、定理 三角形兩邊的和大于第三邊
16、推論 三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20、推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關于某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48、定理 四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51、推論 任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1 平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1 矩形的四個角都是直角
61、矩形性質(zhì)定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1 菱形的四條邊都相等
65、菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1 關于中心對稱的兩個圖形是全等的
72、定理2 關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96、性質(zhì)定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質(zhì)定理2 相似三角形周長的比等于相似比
98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點的距離等于定長的點的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理 一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120、定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑
124、推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
125、推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等于它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
一、基本知識
一、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)②分數(shù)→正分數(shù)/負分數(shù)
數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。
絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。③一個數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個有理數(shù)互為倒數(shù)。
除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。
3、代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關系
大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦?,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數(shù)根;
II當△=0時,一元二次方程有2個相同的實數(shù)根;
III當△<0時,一元二次方程沒有實數(shù)根(在這里,學到高中就會知道,這里有2個虛數(shù)根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:①關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C如果不等式乘以0,那么不等號改為等號
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
3、函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。
一次函數(shù):①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。②當B=0時,稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。③在一次函數(shù)中,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時,則經(jīng)124象限;當K〉0,B〈0時,則經(jīng)134象限;當K〉0,B〉0時,則經(jīng)123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內(nèi),過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯角相等,兩直線平行
11、同旁內(nèi)角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯角相等
14、兩直線平行,同旁內(nèi)角互補
15、定理 三角形兩邊的和大于第三邊
16、推論 三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20、推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關于某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48、定理 四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51、推論 任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1 平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1 矩形的四個角都是直角
61、矩形性質(zhì)定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1 菱形的四條邊都相等
65、菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1 關于中心對稱的兩個圖形是全等的
72、定理2 關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96、性質(zhì)定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質(zhì)定理2 相似三角形周長的比等于相似比
98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點的距離等于定長的點的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理 一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120、定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑
124、推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
125、推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等于它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
熱門問答
- 1龜兔賽跑的手抄報內(nèi)容可以寫什么
- 2鐵血紅安中劉銅鑼寫的《滿江紅.之狗》的內(nèi)容是什么
- 3江南百景圖聆聽10個居民聊天成就完成方法
- 4書店里有什么好看的書?
- 5我閨蜜的故事,因為不知道怎么勸說她,請寶媽們出出主意。
- 6在中國發(fā)展的那個泰國人資料?
- 7布拖農(nóng)村里的叔叔阿姨能聽懂普通話嗎?
- 8《守護甜心》簡介和男主角女主角他們的感情糾葛
- 9戲院的英文怎么讀?
- 10史萊克七怪對白沉香有反感嗎
- 11南渡北歸這部書怎么樣?
- 12、請問有關蘇東坡的趣味故事有哪些呢
- 13《羅密歐與朱麗葉 》內(nèi)容介紹
- 14四個月大寶寶適合聽哪些兒歌?
- 15女性社會地位提高的例子
- 16如何教好古典舞
- 17真武廟是紀念誰的?
- 18請問“你的良心給狗吃了”的由來?
- 19請問京劇《賣水》的主要情節(jié)是什么?
- 20寫姥姥的歌詞或詩歌
- 21峨眉派歷代掌門人是誰?
- 22求故事會的一篇文章:小時候看哭了的,
- 23厭惡為何?動畫片《熊出沒》真的不值得看?
- 24錫伯族的祖先是誰
- 25仰望天空的少女眼瞳中映出的世界講的什么?
- 26同心斷金的意思是什么,出處是哪里?
- 27模擬人生2公寓生活
- 28舅媽真是
- 29一個癡情的越南妹!
- 30文物與博物館學到底該看什么書?。?/a>
相關搜索
- 初一數(shù)學知識點歸納
- 初一下數(shù)學知識點歸納
- 人教版初二數(shù)學上冊知識點歸納
- 蘇教版初一數(shù)學上冊知識點歸納
- 初一英語人教版知識點歸納
- 初二數(shù)學知識點歸納
- 初1數(shù)學知識點歸納
- 初一數(shù)學知識點總結歸納
- 初一上冊數(shù)學知識點歸納
- 初一數(shù)學上冊知識點歸納
- 初一知識點歸納
- 人教版一年級數(shù)學下冊知識點歸納
- 人教初一英語知識點歸納
- 初一英語知識點歸納表人教版
- 初中數(shù)學函數(shù)知識點歸納
- 初三數(shù)學函數(shù)知識點歸納
- 六上蘇教版數(shù)學知識點歸納
- 初二數(shù)學的知識點歸納
- 必修一數(shù)學知識點歸納
- 初中一年級數(shù)學知識點歸納
- 蘇教版小學數(shù)學重點知識歸納
- 初一英語下學期知識點歸納人教版
- 人教版一年級下冊數(shù)學重點知識歸納
- 初一數(shù)學人教版知識點
- 小學數(shù)學知識點歸納
- 初中英語知識點歸納人教版
- 初三人教版英語知識點歸納
- 英語初三知識點歸納人教版
- 初一英語知識點歸納魯教版
- 初一英語知識點歸納滬教版
熱門搜索更多
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z
- 愛情睡前晚安故事大全
- a加學案初中英語
- 鞍山英語四級考試在哪考
- 安排造句二年級英語怎么說
- 愛與陪伴的睡前故事
- 艾普特教育二年級上冊英語
- abc少兒英語兒歌老歌
- 啊二年級的英語怎么說
- ABCmouse在線少兒英語
- 啊二年級英語怎么說英文
- 阿七像米小圈嗎
- A佳少兒英語
- 愛普特英語二年級上冊8頁
- 安徽英語六級過了專升本有優(yōu)勢嗎
- a等級英語考試總分多少
- 安徽高三英語作文模板
- 安徽高二期末鼎尖聯(lián)考英語
- 艾迪的兒童故事
- 埃及英語組詞大全一年級
- abc字母歌英語早教
- 安徽二年級有英語課嗎
- 奧特曼的故事 睡前
- 安徽小學一年級英語跟讀
- ar外研版二年級英語上冊
- 愛課少兒英語怎樣
- 阿卡索少兒英語收
- ae和ame一年級英語
- 愛心故事書兒童
- 奧林匹克競賽英語高三
- 愛華英語四級翻譯高頻
- 不同水平聽力
- 濱州學英語幼兒
- 背景知識聽力
- 八年級英語下冊2單元重點
- 貝因美測聽力
- 八年級上冊英語日記2篇
- 寶安7年級英語期末
- 北航入學前英語考試考什么
- 波波的聽力
- 包頭話聽力
- b級英語考試全過程
- 北京聽力集團
- 繽紛英聽力
- 賓語從句高中英語練習
- 不會口語聽力
- 北航英語考試難度怎么樣
- 本杰明英文聽力
- 八年級英語第1單元重點
- 八年級下冊英語作文篇 1
- 八年級下冊英語1單元副詞
- 八年級下冊英語2grammar
- 伴娘雅思聽力
- 北中聽力
- 白色試卷聽力
- 包頭專版聽力
- 八年級下冊英語 1到3
- 保定幼兒英語家教
- 巴塔木英語早教兒歌
- burglaries聽力原文
- 伯明翰雅思聽力
- 超常思維英語六年級上冊
- 初三聽力如何考好英語作文
- 春節(jié)詩句英語作文六年級
- 春季英語作文六年級下冊
- 春天英語如何造句六年級
- 初三上冊英語考試作文大全
- 春蕾英語小學六年級上冊
- 初三下冊英語六模塊課文
- candy老師六年級英語上冊
- 初三英語考什么科目好一點
- 初中六年級英語語法
- 初三第一節(jié)課英語
- 初一到初三英語單詞湘教版
- 初三英語第9單元2b課文
- 初三第二次英語口考
- 滄州醫(yī)專四級聽力
- 場所詞英語六年級上冊
- 初三英語該怎么講外研版的
- 初三家教英語試課內(nèi)容
- 初三下冊英語單詞朗誦
- 春蕾教英語六年級單詞
- 春節(jié)作文英語六年級水平
- 初三英語第十二單元2b
- 初三英語unlt2 Toplc1 2
- 初三英語一般過去式單詞
- 春節(jié)的介紹英語六年級
- 初三英語重點知識點人教
- 初三第2單元的英語作文怎么寫
- 成都六年級英語上冊講解
- 初中英語六年級
- 單田芳評書楊家將120
- 嘀嗒吉他單弦譜子
- 東北二人轉八歲紅
- 多集評書怎么壓縮
- 大鼓張郎休丁香
- 東北大鼓藝珍妃
- 單弦張春秀
- 德云社演員孫越相聲大全
- 端午節(jié)晚會相聲小品
- 地名簡稱相聲
- 低調(diào)的相聲家
- 杜國治相聲
- 單田芳評書楚漢爭雄音頻
- 大鼓小鼓幼兒舞蹈教案
- 打開窗戶說亮話相聲
- 第7頁單田芳評書
- 大話西游靈寶技能清音寂靈
- 大白話相聲
- 德云社朱云峰快板
- 東北二人轉演員梁紅
- 懟人如同說相聲
- 大鼓人生路
- 端午節(jié)一起來看大同數(shù)來寶
- 單弦生日快樂尤克里里
- 董秀娟演唱二人轉秦香蓮
- 大鼓音樂伴奏
- 東北評書說唱
- 東北相聲名家黃夢如
- 大鼓比小提琴聲音高
- 雕弓天狼評書趙維莉
- 二人轉小帽曲譜江南放風箏
- 二人轉火苗西廂寫書
- 二人轉李明洋
- 二人轉處處有親人歌詞
- 二人轉演員孫曉風
- 二人轉紅柳子調(diào)魏三
- 耳朵大的相聲藝術家
- 兒童相聲大與小相聲詞
- 二人轉演員說的拜年
- 兒童相聲劇本搞笑五人
- 二人轉全集笑笑茶樓
- 二人相聲吹牛
- 二人轉道情
- 二人轉元素歌曲
- 二人轉神雕大全
- 二人轉秦雪陳三兩爬堂
- 二人轉小二黑
- 兒童在大鼓上跳的舞蹈
- 二人轉演員七歲紅微博映客
- 二人轉洞賓醉酒
- 二人轉演員蔡曉樂
- 二人轉小帽采果孝母
- 二人轉楊姑娘唱詞
- 二人轉老電影
- 二人轉野花13集
- 二人轉dj孫小寶
- 兒童一大三小快板教學
- 二人轉楊姑娘完整版音頻
- 二人轉鐘馗
- 二人轉的郭旺
- 福州18年英語中考
- 佛山中考2023英語
- 福建英語中考考卷
- 福建英語中考聽力教輔
- 鳳凰語文中考英語
- 沸騰英語適合中考嗎
- 奉節(jié)英語中考聽力滿分
- 福建中考2021 英語
- 福建中考英語模
- 福州中考英語試卷2017
- 撫順2020英語中考卷
- 福州中考英語考2019
- 撫州中考英語作文2023
- 福建中考質(zhì)檢英語
- 富順中考英語滿分多少
- 阜陽英語中考錄取分
- 福建廈門英語中考
- 房山英語中考二模
- 福州英語中考短文填詞
- 福州美術中考英語試卷
- 福建中考英語切線
- 福州到安徽中考英語
- 福建中考英語110
- 福建和寧夏中考英語
- 福建英語中考復習教輔
- 福建中考英語評析
- 福清中考英語狀元卷子
- 父親作文結尾英語中考
- friend英語作文中考
- 福州英語中考模擬2020
- 公交用英語說一句話一年級
- 廣州市一年級上冊英語口語35頁
- 光谷十小一年級上英語課嗎
- 趕海用英語說一句話一年級
- 故事日記兒童
- 過的愉快英語作文初二上冊
- 高一年級下學期五月聯(lián)考英語
- 廣州版英語口語一年級上冊mp3
- 貴陽市一年級就開始學英語了嗎
- 廣州一年級英語下冊第二頁
- 廣州九年義務教育英語一年級下
- 高中一年級人教版英語上下兩冊
- 廣大附小一年級有英語課嗎
- 廣州版一年級英語下冊第2頁跟讀
- 高七是哪一年級學的英語
- 廣州版英語口語一年級上冊u1
- 過不了英語六級會怎么樣
- 廣州一年級英語下冊一課一練
- 關于旅游的英語作文初三
- 貴州商學院哪個專業(yè)需要英語六級
- 貫口三國演義
- 廣州市一年級英語口語mp3
- 瓜的植物大戰(zhàn)僵尸
- 跟香香讀英語一年級上冊第七課
- 古裝武打片白眉大俠小五義
- 廣州英語口語一年級上冊u4
- 廣州版英語口語一年級u3
- 廣州小學英語口語一年級上u5
- 高一年級英語全一冊單詞第二單元
- 光明日報出版的英語六級
- 后代的的英語啟蒙
- 歡樂頌兒歌和弦伴奏
- 海盜的兒歌
- 黃多多英語啟蒙分級
- 湖南四級英語考試作文
- 呼和浩特英語字母啟蒙
- 和平村英語啟蒙分級
- 花和葉的兒歌有哪些
- 戶外活動兒歌中班內(nèi)容
- 喝橙汁的英語作文初中初三
- 好奇寶寶的兒歌
- 孩子英語啟蒙磨耳朵
- 好玩的數(shù)字游戲早教兒歌
- 黑米兒歌
- 活動前的兒歌歌詞
- 杭州下沙少兒英語排名
- 華南理工學位英語考試
- 戶外飛鏢教程簡單好學兒歌
- 海韻互聯(lián)兒歌1
- 漢文字母兒歌
- 葫蘆娃折紙飛機兒歌
- 湖北大學公共英語考試
- 函授四級英語考試重點內(nèi)容
- ??趩⒚捎⒄Z口語
- 鴻雁飛舞兒歌
- 紅蘿卜紅蘿卜兒歌
- 海邊游泳池兒歌
- 哈嘍歌兒歌奧爾夫
- 河北邯鄲一??荚嚦跞⒄Z
- 還剩1天英語考試還能考嗎
- 橘子兒童英語
- 畸形兒童英語
- 介紹城市兒童英語
- 接送兒童英語對話
- 劍橋兒童英語s
- 救援車兒童英語
- 金紫荊兒童英語
- 嘰里呱啦兒童英語82
- 杰克布朗兒童英語
- 簡易兒童英語對話
- 京東兒童英語暢銷
- 簡單兒童英語戲劇
- 家人系列兒童英語
- 劍橋兒童英語 音頻
- 劍橋cice兒童英語
- 堅強兒童英語啟蒙
- 簡單兒童英語電源
- 景宇兒童英語
- 劍橋兒童英語snowman
- 監(jiān)督兒童英語背誦
- 杰克兒童英語DVD
- 簡易兒童英語故事
- 濟南兒童英語沙龍
- 介紹留守兒童英語
- 經(jīng)典兒童英語短文
- 劍橋兒童英語 同步
- 佳音兒童英語4
- 僵尸舞兒童英語
- 簡單兒童英語作文
- 晉城學兒童英語
- 昆山期末英語考試六年級
- 考大學英語四級技巧
- 課課優(yōu)優(yōu)六年級下冊英語
- 開心版六年級上英語期末
- 開門了造句六年級上冊英語
- 夸獎孩子英語好
- 開心版六年級英語下冊電子
- 開心學英語六年級下冊新版
- 開心版英語六年級同步精練
- 科學的英語晨讀文章六年級
- 快速背英語英漢互譯六年級
- 科普版英語六年級上冊期中
- 考研英語四級282分
- 開心學英語六年級時態(tài)語法
- 課堂小作業(yè)英語六年級上
- 課前導學六年級英語上
- 喀左新起點六年級英語
- 科普版小學英語六年級翻譯
- 開心學英語六年級下冊音頻
- 開心學英語六年級單詞檢測
- 可以給幼兒穿襪子嗎英語
- 課課練小學六年級英語上冊
- 科教版六年級英語上冊作文
- 課外作業(yè)英語六年級上冊
- 科普版英語六年級上冊名詞
- 開心英語六年級單詞怎么記
- 科普版電子英語六年級上冊
- 可復制大學四級英語范文
- 科普版六年級英語上冊講解
- 科比英語作文六年級下冊
- 六年級期中英語單詞大全
- 臨沂小學英語馬老師怎么樣
- 力學小學英語單詞考研版
- 老師考試作文范文小學英語
- 魯教英語三年級上6
- 律動英語歌小學舞蹈完整版
- 連云港小學學英語幾年級
- 魯教版小學英語字母歌
- 律動感強的小學英語律動
- 魯湘版6年級英語聽力訓練
- 六年級學英語嗎2A好嗎
- 隆昌小學英語總分多少分
- 六年級英語有聲閱讀
- 六年級英語(下)unit1測試卷
- 林州市小學五年級英語
- 六年級上冊英語unit1怎么講作文
- 遼寧小學英語考編難度大嗎
- 六年級上冊期中英語語法
- 羅莊期中英語作文初一下冊
- 朗文小學英語6a詞匯表
- 蓮湖小學英語怎么寫單詞
- 臨川小學的英語劉燕珍
- 了解英語單詞小學四年級
- 六年級英語上冊M2U1作文
- 樂樂課堂小學英語過去式
- 遼師小學英語默寫單詞大全
- 零基礎怎么教小學語文英語
- 臨沂市蘭山區(qū)暑假小學英語
- 六年級上冊小學英語朗讀
- 六年級上冊英語空氣
- 免費看書全本慶余年2
- 免費閱讀慶余年2小說
- 免費看書慶余年2
- 貓膩小說慶余年2
- 免費版慶余年2
- 貓膩的作品慶余年2
- 免費收聽慶余年2
- 免費慶余年小說2
- 買慶余年2書
- 貓膩的慶余年2
- 貓膩會寫慶余年2
- 免費觀看慶余年2
- 密室逃脫慶余年2
- 免費聽慶余年2
- 漫畫解說慶余年2
- 貓膩寫慶余年2了嗎
- 免費的慶余年2
- 萌探2慶余年
- 沒看慶余年1影不影響看慶余年2
- 陌煙塵慶余年2
- 夢里桃花 慶余年2
- 貓膩慶余年2漫畫
- 陌煙塵 慶余年2
- 貓膩慶余年2后續(xù)
- 麻雀2和慶余年
- 貓膩慶余年2小說解說
- 貓膩小說余年慶2
- 免費慶余年2電視
- 免費播放慶余年2
- 免費下載慶余年2
- 女童15歲
- 內(nèi)分泌系統(tǒng)的反饋調(diào)節(jié)是指
- 念地藏經(jīng)好還是念地藏菩薩圣號好
- 你要的全拿走表達了什么
- 紐扣的女孩
- 那個憶江南
- 念念不忘歌曲原唱
- nice英語單詞怎么讀音
- 你的名字視頻
- 女孩子的嫁妝
- 哪吒 封神演義
- 男方父母給的見面禮
- 你說的對,可是原神
- 吶喊鑒賞
- 南淺戰(zhàn)梟全文免費閱讀
- 女人吃甲魚的功效與作用
- 哪里可以聽免費歌曲
- 南寧成人舞蹈培訓班
- 牛奶可樂經(jīng)濟學全套
- 女a(chǎn)生存手冊
- 男主重生到校園時期的小說
- 尼采文集
- 鬧鬼的房子小游戲
- 女帝本子同人
- 女巫醫(yī)純音樂
- 牛津樹少兒英語繪本電子版
- 逆天至尊在線觀看免費高清完整版
- 倪萍姥姥語錄全文
- 哪個英語證書含金量高
- 尿酸高和低密度脂蛋白偏高
- onthewall幼兒英語
- ov慢速早教英語
- oven 幼兒英語
- 歐美幼兒英語
- out幼兒英語
- 歐美兒童早教英語
- owl 幼兒英語
- openmyeyes幼兒英語
- ow幼兒英語
- 歐美英語幼兒
- ook幼兒英語
- open 幼兒英語
- ower幼兒英語
- 歐文英語幼兒
- one photo 英語早教
- open幼兒英語
- office幼兒英語
- owl幼兒英語
- oxford 幼兒英語
- og幼兒英語
- 歐若拉初中英語
- orange幼兒英語
- olden幼兒英語
- oneday幼兒英語
- oh no早教英語
- ood幼兒英語
- onetofive幼兒英語
- oxford幼兒英語
- ostrich幼兒英語
- owl英語幼兒
- 評書劉蘭芳九鳳朝陽刀
- 評書呼家將163
- 評書神箭手
- 評書和說書的區(qū)別
- 評書水平
- 鄱陽縣贛劇全集西皮快板
- 評書惡僧傳19
- 評書大全免費聽評書李元霸
- 評書合集水滸傳單田芳
- 評書回龍傳14回
- 評書白眉大俠徐良丟刀
- 評書岳飛傳40100
- 評書楊家將556
- 評書大刀杜心五
- 評書三國演義蔣干
- 評書君臣斗全集劉寶瑞
- 評二人轉劇乾坤帶
- 評書楊妖轉
- 評書薛仁貴征西134回
- 評書李元霸7
- 評書李自成三十五
- 評書薛仁貴征東37
- 評書哈爾濱盜銀行
- 評書大明英烈99
- 評書列國演義
- 評書劉蘭芳播講隋唐演義
- 評書龍婿7
- 評書佛山趣談
- 評書單曲組詞
- 評書呂四娘下部
- 秦皇島二宮二人轉電話
- 清河唱大鼓
- 奇志大兵趙衛(wèi)國相聲
- 泉州南音工資
- 敲拖相聲
- 千言萬語感黨恩快板
- 七十年代農(nóng)村說書開場白
- 琴書不見子猷過
- 清蓮社相聲
- 秦嵐和主持人聊相聲
- 奇志說的掉井里的相聲
- 琴書十二寡婦征西38
- 琴書劉墉鍘西宮8全集
- 請播放溫州鼓詞十二紅
- 秦瓊評書文案
- 琴書五女興唐傳6部
- 琴書八虎征西十八集
- 秦志平唱的二人轉西廂
- 祁東漁鼓戲哭墳全集
- 趣對聯(lián)相聲
- 清音洞共1篇
- 琴書孫臏與龐涓全集
- 請我要聽評書
- 祁東漁鼓高玲媽媽
- 清音菩提現(xiàn)在直播間
- 琴書包公出巡
- 謙嫂相聲集錦
- 奇志大兵經(jīng)典相聲完整
- 清音文化科技
- 沁縣李彩英徒弟結婚說書
- 讓我們一起朗誦兒歌吧英語
- 如何用日語喊寶貝兒歌名字
- 如何訓練孩子英語朗讀技巧
- 認識動物兒歌
- 日期英文兒歌繪本推薦書目
- 如何教孩子學音標英語
- 人教版七年級英語下冊第7單元2b課文
- 人教版初一英語單詞例句
- 熱門兒歌三百首大全
- 認識顏色英語歌兒歌
- 仁愛英語九年級課文音頻mp3
- 認識家人的兒歌
- 蓉城優(yōu)課堂給力a 7年級英語下冊
- 人教社小學英語聽力
- 如何讓孩子在家復習英語
- 入門級五線譜兒歌
- 認識生活的英文兒歌歌詞
- 仁愛版英語7年級下冊U5試卷
- 燃氣泄漏不要慌兒歌
- 仁愛初一英語第二單元
- 人教版八年級下英語9單元閱讀
- 人教版二年級英語下總結冊
- 如何正確教小學英語語法
- 如何和孩子講英語時態(tài)
- 人教版一年級英語考什么
- 如何從小對孩子說英語
- 認識五星紅旗簡短兒歌
- 讓寶寶愛吃蔬菜的兒歌歌詞
- 讓我愛你英文兒歌舞蹈
- 如何寫好初中生活作文英語
- 上海哪里學兒童英語最好
- 身高 英國兒童英語翻譯
- 什么是兒童英語自主閱讀
- 上海市區(qū)兒童英語
- 深圳兒童英語怎么樣
- 水果類兒童英語單詞
- 獅子王兒童英語配音
- 生活用品兒童英語
- 宿州萬達兒童英語
- 石景山兒童英語速成
- 什么軟件教兒童英語好
- 少年兒童英語音標
- 四歲兒童英語自然交流
- 雙語兒童英語獅子王
- 三至五歲兒童英語
- 失學兒童英語作文60字
- 送給兒童英語禮貌問語
- 生活化兒童英語啟蒙
- 思佳姐姐兒童英語
- 蘇州新東方兒童英語
- 山區(qū)的兒童英語怎么寫
- 廈門兒童英語怎么啟蒙
- 十一歲兒童英語學習
- 四歲兒童英語外教
- 生活中兒童英語口語
- 適合4歲兒童英語啟蒙
- 沈陽哪里教兒童英語好
- 圣誕蝴蝶結兒童英語
- sss兒童英語歌圓形
- 深圳南山外教兒童英語
- 吐槽物品英語作文高中生
- 聽英語的神器初高中生
- 提高高中生英語閱讀效果
- 泰國高中生都會英語嗎男
- 提出抗疫英語作文高中生
- 提問作文英語翻譯高中生
- 推薦高中生閱讀的英語小說
- 提出高中生的建議英語作文
- tfboys的英語作文高中生活
- 推薦高中生英語詞典
- 提高高中生英語閱讀技巧
- 滕王閣英語作文高中生
- 挑戰(zhàn)與機遇英語作文高中生
- 特殊的經(jīng)歷例子高中生英語
- 特殊行動作文英語高中生
- 跳舞的好處英語作文高中生
- 天津高中生的英語水平
- 提高高中生英語的軟件
- 泰國高中生都會英語嗎現(xiàn)在
- 討論高中生活的英語對話
- 挑戰(zhàn)全國的高中生英語作文
- 臺前縣高中生英語競賽
- 眺望英語作文高中生初三
- 提高高中生英語水平
- 體驗真實高中生活英語作文
- 特長怎么寫好高中生英語
- 團聚翻譯作文英語高中生
- 童年的名句賞析高中生英語
- 體育英語板報內(nèi)容高中生
- 逃脫困擾英語作文高中生
- 惘然追憶
- 我在北石窟等你
- 我要做音樂上的第一
- 我將一世等你
- 我死
- 我是齊天大圣孫悟空
- 我沒那么差
- 我倆是個圓
- 玩所未玩
- 萬人叩首
- 無力抵抗分離
- 為我披上衣
- 武清
- 我的家鄉(xiāng)飛出一支歌
- 我心似凊泉
- 微笑波爾卡
- 為何你要愛上別的男人
- 舞士精神
- 往昔燈謎
- 溫逸杰的主題
- 我不想寫歌
- 我們不見
- 我只怨自己
- 偉大的傻瓜
- 五谷
- 我的音樂時代
- 危險漩渦
- 我們好像在哪見過
- 我們的年終總結
- 晚安說給最愛的人
- 相愛分開都是罪
- 消失之后
- 小說演繹
- 想在夢中多留一會
- 小曲兒開場
- 俠盜聯(lián)盟
- 想不通不妨換個角度
- 心中有苦的根源
- 心邪
- 星空下的約定
- 旋律走心又拿人
- 新改說唱
- 相愛不易
- 心語星系
- 相識以后
- 新年之歌完整混音版
- 想飛的烏龜
- 心連心永遠歌唱
- 尋你的夢
- 向東流
- 小魔鬼
- 小趣
- 秀才騎馬
- 小鴨子的愿望
- 心里有個人
- 笑著笑著就流淚
- 新版舉起小手就開搖
- 寫不了情歌
- 心痛擱開始
- 夏幻
- 幼兒英語課打卡
- 幼師怎樣教好幼兒英語
- 幼兒英語句簡單對話
- 英語八年級上冊六單元3d翻譯
- 英語 早教 像巧虎一樣
- 岳飛傳評書單田芳第十四回
- 幼兒園英語徽標
- 余姚幼兒英語教育
- 英語早教足球怎么說的好聽
- 幼兒英語早教單詞兒歌有哪些
- 有英語啟蒙的早教軟件有哪些
- 嬰幼兒早教英語小動物
- 幼兒英語早教啟蒙數(shù)字1到100
- 魚的種類科普早教英語翻譯
- 幼兒拔河的英語對話
- 幼兒英語故事秀作用
- 英語魯教版八年級下冊3b
- 幼兒英語詩歌音頻翻譯
- 幼兒學英語網(wǎng)
- 亞克迪早教英語在線聽
- 英語單詞早教歌兒歌手指
- 英語早教日常生活用品
- 幼兒幾歲學英語最佳
- 英語早教紀錄片兒童版
- 幼兒英語介紹家庭短文
- 幼兒學英語聽不懂
- 幼兒英語韻律的運用
- 幼兒英語教育調(diào)研
- 有外星人英語早教手指歌
- 幼兒學英語搞笑瞬間
- 豬爸爸講英語二年級下冊第四模塊
- 長篇歷史小說單田芳播講
- 怎樣面對英語四級考試
- 漳州一年級有教英語嗎
- 助學英語考試學位是什么
- 在職英語四級怎么考
- 怎么了用英語怎么說二年級
- 怎么幫一年級孩子學英語
- 重新播放一年級英語歌曲
- 專業(yè)四級和英語四級
- 智慧學案英語二年級下冊第五單元
- 重回單田芳家的小說
- 章魚故事睡前女朋友長篇
- 怎樣寫好英語簡單句子二年級
- 朱旭 常寶華 單田芳
- 怎么查看英語四級成績
- 棗莊市高三英語考試
- 豬爸爸教英語二年級下冊p4
- 足球小天才米小圈
- 找一個二年級英語怎么說
- 怎么赴香港讀研英語考試
- 澤林版英語二年級上冊第四單元
- 浙江電臺故事睡前治愈系
- 職高一年級英語期末測試
- 重慶英語四級報名
- 重慶話講的睡前故事
- 浙大開學英語考試難嗎
- 中小學四年級英語上冊第7單元
- 中國古代亂世梟雄排名
- 怎么樣用英語怎么說二年級